Eicosapentaenoic acid protects endothelial cells against anoikis through restoration of cFLIP.

نویسندگان

  • Takashi Suzuki
  • Keisuke Fukuo
  • Toshimitsu Suhara
  • Osamu Yasuda
  • Naoyuki Sato
  • Yukihiro Takemura
  • Maki Tsubakimoto
  • Toshio Ogihara
چکیده

Dietary supplementation with eicosapentaenoic acid (EPA) improves the prognosis of chronic inflammatory diseases, including atherosclerosis. The mechanism underlying these beneficial effects, however, remains to be elucidated. Here we show that EPA protects endothelial cells from anoikis through upregulation of the cellular FLICE (Fas-associating protein with death domain-like interleukin-1-converting enzyme)-inhibitory protein (cFLIP), an endogenous inhibitor of caspase-8. EPA-induced upregulation of cFLIP expression was partially suppressed by the phosphatidylinositol-3-kinase inhibitor wortmannin. Conversely, treatment with insulinlike growth factor-1 (IGF-1), an activator of phosphatidylinositol-3-kinase/Akt signaling, or infection with an adenoviral construct expressing the constitutively active Akt gene induced upregulation of cFLIP expression. In addition, pretreatment of endothelial cells with either EPA or IGF-1 protected them from anoikis, suggesting that EPA-induced protection against anoikis is partially mediated through activation of Akt. On the other hand, when endothelial cells were already detached, treatment of these cells with EPA but not with IGF-1 protected them against anoikis. Importantly, EPA restored cFLIP expression without activating Akt signaling in detached endothelial cells, whereas IGF-1 had no effect. Additionally, exogenously restored expression of cFLIP by the tetracycline-regulated adenovirus system protected endothelial cells against anoikis. Furthermore, EPA was protective against the loss of endothelium in an organ culture of rat aortas. These findings suggest that EPA protects against endothelial cell anoikis through restoration of cFLIP expression, which might contribute to the mechanism underlying the beneficial effects of EPA in patients with hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway

Recent studies have shown that free fatty acids are associated with chronic inflammation, which may be involved in vascular injury. The intake of eicosapentaenoic acid (EPA) can decrease cardiovascular disease risks, but the protective mechanisms of EPA on endothelial cells remain unclear. In this study, primary human umbilical vein endothelial cells (HUVECs) treated with palmitic acid (PA) wer...

متن کامل

Matrix Attachment Regulates FAS-Induced Apoptosis in Endothelial Cells

Survival of endothelial cells is critical for cellular processes such as angiogenesis. Cell attachment to extracellular matrix inhibits apoptosis in endothelial cells both in vitro and in vivo, but the molecular mechanisms underlying matrix-induced survival signals or detachment-induced apoptotic signals are unknown. We demonstrate here that matrix attachment is an efficient regulator of Fas-me...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Green tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity

Objective(s):Many studies have reported that tea consumption decreases cardiovascular risk, but the mechanisms remain unclear. Green tea is known to have potent antioxidant and free radical scavengingactivities. This study aimed to investigate whether green tea extract (GTE) can protect endothelial progenitors cells (EPCs) against oxidative stress through antioxidant mechanisms. Materials and M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2003